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Tissue regenerative potential displays striking divergence across phylogeny and ontogeny,
but the underlying mechanisms remain enigmatic. Loss of mammalian cardiac regenerative
potential correlates with cardiomyocyte cell-cycle arrest and polyploidization as well as
the development of postnatal endothermy. We reveal that diploid cardiomyocyte
abundance across 41 species conforms to Kleiber’s law—the ¾-power law scaling of
metabolism with bodyweight—and inversely correlates with standard metabolic rate,
body temperature, and serum thyroxine level. Inactivation of thyroid hormone signaling
reduces mouse cardiomyocyte polyploidization, delays cell-cycle exit, and retains
cardiac regenerative potential in adults. Conversely, exogenous thyroid hormones inhibit
zebrafish heart regeneration. Thus, our findings suggest that loss of heart regenerative
capacity in adult mammals is triggered by increasing thyroid hormones and may be a
trade-off for the acquisition of endothermy.

I
n adult zebrafish and neonatal mice, heart
regeneration occurs primarily through pro-
liferation of preexisting cardiomyocytes (1, 2).
Most mammalian cardiomyocytes undergo
polyploidization and permanently withdraw

from the cell-cycle postnatally, whereas lower
vertebrates, such as newts and zebrafish, gener-
ally maintain >95% diploid mononucleated cardio-
myocytes even as adults (1, 2). Recent studies
in both mice and zebrafish further substantiate
the positive correlation between diploid mono-
nucleated cardiomyocyte abundance and heart
regenerative capacity (3, 4). We therefore ex-
ploited cardiomyocyte ploidy as a proxy for heart
regenerative potential and analyzed its variabil-
ity across vertebrate species (Fig. 1A and tables
S1 and S2).
Our phylogenetic analysis confirmed that car-

diomyocytes from adult fish, amphibians, and
reptiles are mostly (98.3 to 77.1%) mononucleated
and diploid (Fig. 1B), which is consistent with
their high proliferative and regenerative capa-
cities (fig. S1) (5, 6). Certain monotreme, eden-
tate, cetacean, and chiropteran species retained
high percentages of mononucleated diploid car-

diomyocytes in the adult heart. In particular, the
short-beaked echidna (Tachyglossus aculeatus),
platypus (Ornithorhynchus anatinus), lesser
anteater (Tamandua tetradactyla), bowhead whale
(Balaena mysticetus), little brown bat (Myotis
lucifugus), and Egyptian fruit bat (Rousettus
aegyptiacus) possessed 59.3 to 34.1% diploid
cardiomyocytes as compared with 9.4% observed
in mice (Fig. 1B, fig. S2, and table S2).
Diploid cardiomyocyte abundance did not

significantly correlate with bodyweight, heart
rate, or blood pressure (fig. S3A and table S3).
However, it displayed a robust inverse correla-
tion with standard metabolic rate (Fig. 2A and
fig. S3B). According to Kleiber’s law (7), basal
metabolic rate (MR) scales with body mass (M)
asMR =MR0M

0.75, in whichMR0 is the standard
metabolic rate. Ectothermic animals have a dis-
tinct MR0 value from that of endothermic ani-
mals: The average value of MR0 is 0.21 W kg−0.75

for fish, amphibians, and reptiles (8), an order
of magnitude less than that observed in endo-
thermic eutherians (3.35 W kg−0.75) (9). The
change of cardiomyocyte ploidy in vertebrates
seemingly occurred in parallel with the major

metabolic transition from ectotherms to endo-
therms (Fig. 2A).
In addition to mass, another key determinant

of metabolic rate is temperature. Standard meta-
bolic rate MR0 is proportional to biochemical
reaction rates and therefore varies with temper-
ature as MR0 ~ e–E/kT, where E represents the
average activation energy for the reactions, k is
the Boltzmann constant, and T is the absolute
temperature (10). Data collected from microbes,
plants, and animals confirm a universal inverse
relationship between MR0 and e–1000/T (10). We
evaluated cardiomyocyte nucleation as a func-
tion of e–1000/T—particularly among mamma-
lian species, for which T is stable throughout
most of their lives—and found a strong in-
verse correlation (fig. S3C). In mammals, T is
a simple function of body temperature (Tb) as
T = Tb + 273. In the physiological range of
mammalian Tb (30 to 39°C), e–1000/T displays a
linear relationship with T (fig. S3D). Indeed,
when we plotted mammalian diploid cardio-
myocyte percentages against their respective
body temperatures, a linear relationship was
observed (Fig. 2B and figs. S3E and S4).
As the major regulators of energy metabolism

and thermogenesis (fig. S5) (11), thyroid hor-
mones are hypothesized to drive the ectotherm-
to-endotherm transition (12). We analyzed the
relationship between previously reported thyroid
hormone levels on cardiomyocyte nucleation
and uncovered an inverse correlation between
plasma thyroxine (T4) levels and diploid cardio-
myocyte content (Fig. 2C and table S4). Alto-
gether, our analyses implicate that animals with
lower standard metabolic rates, body temper-
atures, and serum T4 levels may have more abun-
dant diploid cardiomyocytes.
The level of circulating thyroid hormones rises

>50-fold in newborn mice shortly after birth (fig.
S6A) (13), which coincides with cardiomyocyte
cell-cycle exit, binucleation, and loss of regen-
erative capacity (1). The physiological role of thy-
roid hormones in cardiomyocyte proliferation
has not been established. Thyroid hormones have
been reported to either inhibit (14, 15), enhance
(16), or have no effect on (17) cardiomyocyte prolif-
eration. We found no effect of exogenous triiodo-
thyronine (T3) on cardiomyocyte proliferation
in vitro (fig. S6B). In addition, thyroid hormones
were recently proposed to promote a burst of
mouse cardiomyocyte division at postnatal day 15
(P15) (18); however, others have found no evi-
dence of cardiomyocyte expansion at this stage
(19, 20).
To determine the role of thyroid hormones in

the regulation of cardiomyocyte proliferation in
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vivo, we injected mice daily with NH3, a specific
inhibitor of thyroid hormone receptors (fig. S7A)
(21). Cardiomyocytes were identified bymeans of
perinuclear staining of pericentriolar material
1 (PCM1) protein, and proliferation was assessed
at P14, when cardiomyocyte binucleation and
cell-cycle arrest are largely completed (1). Our
results demonstrate that treatment with NH3
enhanced myocyte proliferation by approxi-
mately fourfold (fig. S7, B to D), whereas chem-
ical inhibition of other pathways documented
to change during the perinatal window did not
significantly affect cardiomyocyte proliferation
in our assay (fig. S7B and table S5). We further
validated the role of thyroid hormone signaling
in promoting myocyte postnatal cell-cycle exit by
blocking thyroid hormone synthesis with pro-
pylthiouracil (PTU) and analyzing mutant mice
with global expression of dominant negative (DN)
thyroid hormone receptor–a (TRa) (fig. S8) (22).
Both conditions similarly resulted in approxi-
mately threefold increases in proliferating and
diploid cardiomyocytes.
We next generated mutant mice with

cardiomyocyte-specific expression of dominant
negative TRa (Myh6-Cre;ThraDN/+) (Fig. 3A).
Despite a normal bodyweight at P14, the heart
weight of Myh6-Cre;ThraDN/+ mice increased
by 21% (Fig. 3B and fig. S9B). We also observed
a ~2.3-fold increase in total cardiomyocyte num-
bers as estimated with dissociation (Fig. 3C) and
stereological approaches (fig. S9D), retention
of ~30% diploid cardiomyocytes (Fig. 3C), and
a 47% reduction inmyocyte size inmutant hearts
(Fig. 3C and fig. S9C). Furthermore, increased
numbers of mutant cardiomyocytes expressed
proliferation markers Ki67 (3.5-fold), phospho-
histone 3 ser10 (pHH3) (twofold), and cleavage
furrow-localized Aurora B kinase (8.8-fold) (Fig.
3, D and E, and fig. S9E). Furthermore, EdU
incorporation assays from P12 through P14 re-
vealed that thyroid hormone mutants possessed
increased numbers of EdU-positive diploid car-
diomyocytes, whereas in control mice, all EdU-
positive cardiomyocytes were polyploid (Fig. 3F
and fig. S9F). Furthermore, we generatedMyh6-
merCremer;ThraDN/+mice and induced DN-TRa
expression around the perinatal window (fig.
S10). Increased prevalence of diploid prolifera-
tive cardiomyocytes was also observed in these
mutants (fig. S10). Taken together, these data
demonstrate that perinatal thyroid hormone sig-
naling has an intrinsic role in cardiomyocyte cell-
cycle arrest and polyploidization.
To identify transcripts regulated by thyroid

hormone signaling, we next performed RNA se-
quencing (RNA-seq) analyses of P14 control and
Myh6-Cre;ThraDN/+ hearts. Gene-set enrichment
analyses revealed that cell-cycle, E2F target, and
G2M checkpoint genes were significantly up-
regulated (Fig. 3G and fig. S11). In genes down-
regulated in thyroid hormone mutant hearts, we
found an enrichment of components involved in
oxidative phosphorylation, citrate (TCA) cycle, and
cardiac muscle contraction (Fig. 3G and fig. S11).
The expression levels of many mitochondrial genes
were reduced (Fig. 3H). To identify TRa direct

gene targets, we generated a mouse strain termed
ThraTAG in which the coding sequence for pro-
tein G–tagged TRa1 receptor is knocked into the
endogenous Thra locus, allowing for Cre-dependent
expression. Chromatin immunoprecipitation-
sequencing (ChIP-seq) analyses suggest that
a majority of down-regulated mitochondrial genes
are direct targets of TRa (Fig. 3H and fig. S12). One
of these targets is carnitine palmitoyltransferase 2
(Cpt2), which encodes an enzyme essential for

b oxidation of long-chain fatty acids in the
mitochondria (23). Both Cpt2mRNA and protein
levels were partially (~40%) depleted in the
hearts ofMyh6-Cre;ThraDN/+ mice (fig. S13). We
further showed that partial depletion of Cpt2
in Myh6-Cre;Cpt2fl/+ heterozygous mutant mice
resulted in enhanced cardiomyocyte prolifera-
tion (fig. S14) without increased heart size,
which is in contrast to the severe pathological
hypertrophy observed in homozygous mutants
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Fig. 1. Phylogenetic analysis of vertebrate cardiomyocyte (CM) nucleation and ploidy.
(A) Cladogram of species examined here. (B) Percentages of mononucleated diploid CMs. Each
dot represents the value from the adult heart(s) of one species. Black, multiple samples were
quantified; gray, only a single specimen was collected and analyzed. The data are listed from left to
right according to the value of diploid CMs. Each new species analyzed in the current study is
marked with an animal symbol next to it. Unlabeled dots represent species with previously reported
CM ploidy values. All data are presented in table S2. Mammalian species with >30% mononucleated
(diploid) CMs are first identified in this study.
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presented in tables S2 to S4.
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(24). Thus, our findings suggest that reduction
of Cpt2, at least in part, contributes to the in-
creased cardiomyocyte proliferation observed in
thyroid hormone mutants.
Consistent with reduced expression of many

mitochondrial genes,Myh6-Cre;ThraDN/+ mu-
tant hearts have less mitochondrial DNA, an
increased ratio of reduced to oxidized gluta-
thione, and diminished levels of reactive oxy-
gen species (fig. S15). Previous studies have
implicated that increasing reactive oxygen spe-
cies in the postnatal heart, associated with mito-
chondrial biogenesis, is a major inhibitor of
cardiomyocyte proliferation and heart regen-
eration (25, 26). Thus, our results identify thyroid
hormone signaling as an upstream regulator of
this pathway.
We next characterized the hearts of adult

Myh6-Cre;ThraDN/+ mutant mice and their re-
generative capacity (Fig. 4A). Adult thyroid
hormone mutant hearts were 37% larger than
controls (Fig. 4B and fig. S16) and contained an
increased number (approximately twofold) of
cardiomyocytes as shown with both dissociation
(Fig. 4C) and stereological methods (fig. S16).
Mutant cardiomyocytes are smaller, and ~19%
of them remain diploid (Fig. 4C). To assess the
cardiac regenerative potential of these adult
mutants, we performed cardiac surgery to in-
duce ischemia reperfusion (IR) injury. First,
cardiomyocyte viability was assessed, and no

significant difference was found between the
mutant and control hearts 24 hours after is-
chemia (fig. S17). Second, cardiomyocyte pro-
liferation was examined 10 days after injury.
Mutant mice possess a 3- to 10-fold increase in
proliferating cardiomyocytes after cardiac in-
jury (Fig. 4, D and E, and fig. S18). Injection of
EdU during the first 10 days after injury revealed
a 10-fold increase in EdU-positive diploid car-
diomyocytes 28 days after injury, further sug-
gesting that complete cardiomyocyte division
is increased in thyroid hormone mutant hearts
(Fig. 4F and fig. S18). Third, cardiac functions
were evaluated by means of echocardiography,
which revealed that mutant mice exhibited sig-
nificant improvement of systolic functions after
injury by 11%, whereas control mice did not
(Fig. 4G and fig. S19A). Last, analysis of cardiac
fibrosis 1 month after injury revealed a ~62%
reduction of scar area in mutant hearts (Fig.
4H and fig. S19B). Taken together, these results
show that adult cardiomyocytes with defects in
thyroid hormone receptor activation retain sig-
nificant proliferative and regenerative potential.
Adult zebrafish possess the ability to com-

pletely regenerate their hearts (5); thus, we in-
vestigated how exogenous thyroid hormones
could affect zebrafish cardiomyocyte prolifera-
tion and regeneration. T3 treatment resulted
in a 45% reduction in cardiomyocyte prolifera-
tion, impaired regeneration accompanied with

prominent scars, and a fivefold increase of car-
diomyocyte binucleation (fig. S20). These results
demonstrate that exogenous thyroid hormones
inhibit zebrafish cardiomyocyte proliferation
and regeneration after myocardial injury and
implicate an evolutionarily conserved function
of thyroid hormone in regulating cardiomyocyte
proliferation.
Our findings support a model (fig. S21) in

which loss of cardiac regenerative capacity is
driven by increasing levels of circulating thy-
roid hormones. This process coincides with the
metabolic increase and thermogenesis that oc-
curs during the ectotherm-to-endotherm transi-
tion in both phylogeny (Fig. 2) and ontogeny.
Newborn mice, like many other mammalian
neonates, are poikilothermic at birth and later
increase heat production to regulate body tem-
perature (27), coinciding with increasing levels
of thyroid hormones in circulation. The essen-
tial role of thyroid hormones in driving thermo-
genesis is evident in adult mice devoid of thyroid
hormone receptors (28) or those treated with
thyroid hormone synthesis inhibitor PTU (fig.
S22), which have dramatically decreased basal
body temperatures compared with those ob-
served in monotremes. Elevated metabolic rate
and the evolution of endothermy likely offered
early mammals survival advantages as they
inhabited a temporally wide nocturnal niche
and expanded into regions of colder climates
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Fig. 3. CM-specific inactivation
thyroid hormone receptor
enhances CM proliferation in
neonatal mice. (A) Schematic
for generating Myh6-Cre;ThraDN/+

mice with CM-restricted expres-
sion of a dominant negative
(DN) TRa and analyzing pheno-
types at P14. (B) Measurement
of the bodyweight (BW) and
heart weight (HW) (n = 4 mice).
(C) Ventricular CM number,
ploidy, and size analysis
(n = 3 to 7 mice). (D to F) CM
proliferative activity analysis.
Representative images and
quantifications of (D) proliferating
CMs that stained positive
for Ki67, (E) Aurora B kinase
(ABK) localization at the
cleavage furrow, and (F) EdU
(n = 4 animals). Arrowheads
indicate proliferating CM.
In (E), cardiomyocytes
undergoing cytokinesis are
outlined. In (F), EdU was
analyzed in dissociated CMs
at P14 from mice injected with
EdU at P12 and P13. 1x2n, 2x2n,
and 1x4n denote CMs with one
diploid nucleus, two diploid nuclei, and one tetraploid nucleus, respectively. (G) Expression profiling. Gene set enrichment analysis of
up-regulated and down-regulated pathways in the mutant heart based on the RNA-seq analysis. (H) RNA-seq and ChIP-seq analysis.
Mitochondrial genes whose expression is significantly down-regulated in the mutant hearts are shown (n = 3 hearts). The blue line marks
mitochondrial genes directly targeted by TRa. Values are reported as mean ± SEM. NS, not significant. **P < 0.01, ***P < 0.001, ****P < 0.0001.
Scale bars, (B) 1 mm; (C) 50 mm; (D) 100 mm; (E) and (F) 20 mm.
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previously unexplored by reptiles. Altogether, our
study suggests that loss of mammalian cardiac
regenerative potential may be a trade-off for
thyroid hormone-dependent acquisition of en-
dothermy during animal development and evo-
lution. It will be of key importance to identify
other pathways, in addition to thyroid hormone
signaling, regulating the logic of regenerative
diversity to further understand why this capac-
ity is lost in adult mammals.
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Fig. 4. CMs deficient in thyroid
hormone signaling retain signif-
icant regenerative potential
in adult mice. (A) Schematic of
the experimental plan to analyze
adult hearts and assess regener-
ative response after myocardial
ischemia-reperfusion (IR) injury.
(B) Measurement of the body-
weight (BW) and heart weight
(HW) (n = 5 mice). (C) Analysis of
ventricular CM number, ploidy,
and cell size in adult mice
(n = 3 animals). (D and E) CM
proliferation analysis 10 days after
injury. Quantification and repre-
sentative images of CMs that are
stained positive for Ki67 and
Aurora B kinase (ABK) localiza-
tion at the cleavage furrow in the
hearts with no injury (n = 3 or
4 animals) or the hearts after IR
injury (n = 4 or 5 animals).
Dash lines mark the border of
injury, whereas arrowheads show
proliferating CMs. (F) Analysis of
the number and ploidy of EdU-
incorporated CMs. EdU is injected
daily in the first 10 days after
injury. Dissociated CMs are ana-
lyzed 28 days after IR (n = 4 animals). (G) Measurement of cardiac functions by means of echocardiography. The fraction shortening (FS) and ejection
faction (EF) data of individual animals are presented (n = 5 to 7 animals). (H) Fibrosis analysis 28 days after injury (n = 7 or 8 animals). Values are
reported as mean ± SEM. NS, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Scale bars, (D) 100 mm; (E) 20 mm; (H) 1 mm.
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